Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the Macaque.

نویسندگان

  • B G Cumming
  • A J Parker
چکیده

Binocular neurons that are closely related to depth perception should respond selectively for stimuli eliciting an appropriate depth sensation. To separate perceived depth from local disparity within the receptive field, sinusoidal luminance gratings were presented within a circular aperture. The disparity of the aperture was coupled to that of the grating, thereby rendering unambiguous the psychophysical matching between repeating cycles of the grating. In cases in which the stimulus disparity differs by one horizontal period of the grating, the portion of the grating that locally covers a receptive field is binocularly identical, but the depth sensation is very different because of the aperture. For 117 disparity-selective V1 neurons tested in two monkeys, the overwhelming majority responded equally well to configurations that were locally identical but led to different perceptions of depth. Because the psychophysical sensation is not reflected in the firing rate of V1 neurons, the signals that make stereo matches explicit are most likely elaborated in extrastriate cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rejection of false matches for binocular correspondence in macaque visual cortical area V4.

A plane lying in depth is vividly perceived by viewing a random-dot stereogram (RDS) with a slight binocular disparity. Perception of a plane-in-depth is lost by reversing the contrast of dots seen by one of the eyes to generate an anticorrelated RDS. From a computational perspective, the visual system cannot find a globally consistent solution for matching the left and right eye images of an a...

متن کامل

The Role of Binocular Disparity in Stereoscopic Images of Objects in the Macaque Anterior Intraparietal Area

Neurons in the macaque Anterior Intraparietal area (AIP) encode depth structure in random-dot stimuli defined by gradients of binocular disparity, but the importance of binocular disparity in real-world objects for AIP neurons is unknown. We investigated the effect of binocular disparity on the responses of AIP neurons to images of real-world objects during passive fixation. We presented stereo...

متن کامل

Postnatal development of disparity sensitivity in visual area 2 (v2) of macaque monkeys.

Macaque monkeys do not reliably discriminate binocular depth cues until about 8 wk of age. The neural factors that limit the development of fine depth perception in primates are not known. In adults, binocular depth perception critically depends on detection of relative binocular disparities and the earliest site in the primate visual brain where a substantial proportion of neurons are capable ...

متن کامل

Spatial frequency integration for binocular correspondence in macaque area

Neurons in the primary visual cortex (V1) detect binocular disparity by computing the local disparity energy of stereo images. The representation of binocular disparity in V1 contradicts the global correspondence when the image is binocularly anticorrelated. To solve the stereo correspondence problem, this rudimentary representation of stereoscopic depth needs to be further processed in the ext...

متن کامل

Spatial frequency integration for binocular correspondence in macaque area V4.

Neurons in the primary visual cortex (V1) detect binocular disparity by computing the local disparity energy of stereo images. The representation of binocular disparity in V1 contradicts the global correspondence when the image is binocularly anticorrelated. To solve the stereo correspondence problem, this rudimentary representation of stereoscopic depth needs to be further processed in the ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 2000